Жүктөлүүдө...
TYUP.NET
Катталуу Кирүү

Чексиздик

Баш барак | Бул ким, ал эмне | Чексиздик

Силер сабак даярдаган столду, жашаган үйлөрдү жана көчөнү, шаарды, атүгүл биздин зор өлкөбүздү да ченөөгө болот. Жер канчалык чоң болбосун андагы эң узун аралык - экватор 40 миң чакырымдан бир аз ашыгыраак. Ал эми илимпоздор күнгө, жылдыздарга, ал турсун телескопсуз көрүнбөй турган нерселерге чейинки аралыкты да ченей алышат. Эми мүмкүн болбогон нерсе жөнүндө элестетип көргүлөчү - биз кубаттуу ракета менен космоско учуп чыгып, эң күчтүү телескоп менен гана көрүнүүчү эң алыскы жылдызга жеттик дейли. Ал жерден биз кайрадан асманды жана мурдагыдан да алыста жайгашкан жаңы жылдыздарды көрөбүз. Ал жылдыздарга чейин учуп барабыз - дагы алыскы жылдыздар көрүнөт. Учуубузду андан ары улантабыз... Ар бир жолу биз учуп өткөн аралыгыбызды өлчөп отуруп, жерден көрүнгөн бардык жылдыздарга чейинки аралык канча чакырым болорун айта алабыз. Ченөөгө мүмкүн болгон ар кандай аралыкты математиктер чектүү аралык деп аташат.

Бирок биз кыялыбыз менен болсо да андан ары уча беребиз. Кайсы жылдызга чейин учуп жетпейли, алдыбызда мурдагыдай эле чексиз мейкиндик, себеби аалам чексиз. Эми башка нерсе жөнүндө сүйлөшөлү. Эстегилечи, санаганды кантип үйрөндүңөр эле? Онго чейин санаганды үйрөнгөндөн кийин, андан ары кайсы сан келет? - деп сураган болушуңар керек. Кийин жүзгө, миңге чейин санаганды үйрөндүңөр. Эми силер жүз да, мин, да акыркы сан эмес экендигин түшүндүңөр, себеби миңге бирди кошсок - 1001, экини кошсок 1002 болуп андан ары улана берет.

Бирок силер атаган эң чоң санга да бирдиктерди кошуп улай берүүгө болот: ага бирди кошсок жаңы эң чоң сан келип чыгат. Ошондуктан эч кандай эң чоң сан деген жок. Сандар - чексиз көп. Биздин космоско учканыбыз жана эң чоң сан жөнүндөгү эки мисалыбызда тең андан ары деп айттык. Чексиздиктин сыры мына ушу андан ары да катылуу. Андан ары деп айтканыбыз - сөз болуп жаткан кыймыл-аракетти тынымсыз кайталай берүүгө болот дегенди билдирет. Кандай гана жылдызга жетпегин, андан да алыскысы бар. Сандар чексиз көп, себеби эң чоң сан жок - ар бир сандан кийин башкасы, чонураагы уланып кете берет.

Жайгаштыруу: 2016-05-22, Көрүүлөр: 640, Өзгөртүлгөн: 2016-05-22, Тарыхы
Талкулоо Оңдоо/Толуктоо
Кызматташуу/жарнама жайгаштыруу